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A PRECISE CALCULATION OF THE FEIGENBAUM CONSTANTS 

KEITH BRIGGS 

ABSTRACT. The Feigenbaum constants arise in the theory of iteration of real 
functions. We calculate here to high precision the constants ca and 5 associated 
with period-doubling bifurcations for maps with a single maximum of order z, 
for 2 < z < 12. Multiple-precision floating-point techniques are used to find 
a solution of Feigenbaum's functional equation, and hence the constants. 

1. HISTORY 

Consider the iteration of the function 

(1) 4, z(x)= 1 - ktxZ, z> 0; 

that is, the sequence 

(2) x~i+1=',z(xi), i=1,2,...; x0=0. 

In 1979 Feigenbaum [8] observed that there exist bifurcations in the set of 
limit points of (2) (that is, in the set of all points which are the limit of some 
infinite subsequence) as the parameter ,u is increased for fixed z. Roughly 
speaking, if the sequence (2) is asymptotically periodic with period p for a 
particular parameter value j (that is, there exists a stable p-cycle), then as 1u 
is increased, the period will be observed to double, so that a stable 2p-cycle 
appears. We denote the critical u-value at which the 2j cycle first appears by 

Hii 
Feigenbaum also conjectured that there exist certain "universal" scaling con- 

stants associated with these bifurcations. Specifically, 

(3) a = lim Yi It- 
z i-0 Yo j+1 Yj 

exists, and 2 is about 4.669. Similarly, if d is the value of the nearest cycle 

element to 0 in the 2j cycle, then 

di 
(4) a = lim ' J 

exists, and a2 is about -2.503. 
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The conjecture for the case z = 2 was proven by Lanford in 1982 [11], and 
for z < 14 by Epstein in 1985 [7]. 

Some numerical results in the literature are given in Table 1. (Note that most 
authors quote al.) 

TABLE 1 

Reference z a ( 

[8] 2 -2.502907876 4.6692 
[9] 2 2.50290787509589284 4.6692016091029909 
[4] 2 2.502907875095892822283902873 4.6692016091029906718532038 

[13] 2 2.5029078 4.6692016 
4 1.690 7.29 
6 1.467 9.30 
8 1.358 10.948 

10 1.292 12.37 

[5] 2 2.50 4.67 
3 1.93 6.08 
4 1.69 7.29 
5 1.56 8.35 
7 1.41 10.2 

10 1.29 12.3 

Some examples of physical systems in which a and 6 are relevant are de- 
scribed in [2]. Despite the theoretical and applied interest of these numbers, 
little is known about them, for example whether they satisfy any simple alge- 
braic relations. On the question of the limits as z tends to oc of az and JZ 
see [6]. 

We propose here to evaluate a and 6 to high precision for various z, in 
order to provide data for testing conjectures concerning these numbers. 

2. METHOD 

Calculating 6 directly from the definition is impractical because it would 
involve finding high iterates of f, which are subject to accumulation of roundoff 
error, making it difficult to locate the bifurcation values uj accurately. 

A practical algorithm for 6 was described in [3]. However, this is suitable 
for low precision only, owing to its slow convergence. Another method for 6 
was proposed in [12], but has the same drawback. It seems that the original 
method of Feigenbaum [8] is still the best when high precision is desired. We 
briefly describe this method, which is justified in [8]. 

One defines an operator T, acting on functions g: IR -* IR, by 

(5) [Tg](x) = {g(g(g(1)x))}/g(1). 
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If we find an even real analytic function invariant under T, with g(0) = 1, 
then a is determined by a = 1/g(1). 

The numerical method proceeds by approximating g by the form 

n 

(6) g(x) = 1 + E giJxlZ. 
i= 1 

An approximate fixed point of T can then be found by a collocation method. 
We require (5) to be satisfied at n points xj in the interval (0, 1], and solve 
the resulting n nonlinear equations by an n-dimensional Newton iteration. 
Thus we require (for j = 1, ..., n) 

(1 +? i) (gi + gixilzi) 

1-E gi 1 + Egi |1+ Egi) xi 0. 

(7) ~~~~~i=1 

i=1 

= 

If we call the left side of this equation f 

3 
the Newton iteration requires the 

inversion of the Jacobian matrix Of1/0gi. This is the major part of the com- 
putational task. For the smaller z-values, it was found that the initial approx- 
imation to the g-coefficients was not critical, but for the larger z-values some 
trial and error was necessary before convergence was obtained. For z greater 
than 12, all initial approximations tried produced divergence of the Newton 
iteration. However, it is probable that a solution to (7) does exist for all z. 

Feigenbaum has shown [8] that the constant 6Z is the largest eigenvalue of 
the local linearization of T about the fixed point function g found above. A 
simple calculation shows that this operator L is given by 

(8) [Lf](x) = -af(g(x/a)) - ag (g(x/a))f(x/a). 

Once the approximate fixed point g has been found, one may construct a finite- 
dimensional matrix approximating L by a method similar to that used above. 
That is, one evaluates the right side of (8) at the n nodes xi. The largest 
eigenvalue of the matrix can then easily be found by the power method [10, 
?7.3]. 

3. RESULTS 

We have implemented the above scheme with arbitrary-precision floating- 
point arithmetic, using the methods described by Brent [1]. The choice of the 
points xi was found to be not critical, linear spacing being adequate for small 
z. However, the nonlinear spacing xi = (i/n)llz (i = 1, ..., n) produced 
more stable results for the higher z-values, and was therefore used for all the 



438 KEITH BRIGGS 

results quoted. It is observed that the g-coefficients decrease rapidly in magni- 
tude; for example for z = 2, IgiI is about 10 i. This gives a guide to the value 
of n needed; since a is 1/g(1), we must set n about equal to the number of 
decimals desired for a, and preferably greater. We first found a and 6 for 
z = 2, ..., 12 with n = 75 and a working precision of 150 decimal places. 
We then repeated all calculations with n = 100 and a working precision of 
200 decimal places. The results given in Table 2 show as many digits as agree 
between the two calculations. Thus, it is probable that all quoted digits are 
correct. 

TABLE 2 
Feigenbaum's a and 6 for z = 2, 3,..., 12 

a2 -2.5029078750 9589282228 390287321821578638127137672714 
9977336192 0567792354 6317959020 6703299649 7464338341 
29595232 

62 4.6692016091 0299067185 32038204662016172581 8557747576 
86327456513430041343302113147371387 

6'3 -1.92769096384764084494999435296631905189265896703673 
2620743579 6727408667 7490009 

53 5.96796870377745104099419301997967232351260291982742 
39483931720 

64 -1.69030297140524485334378015032416134822827805970956 
1966682423263 

54 7.2846862170 7334336430 8930567995 55306947804661979979 
065907212 

a5 -1.55577125019651840213297862965748441019232289917422 
9329 

55 8.34949913206696352110 9747401811 235583257476 

a6 -1.4677424503 1990094445 38343151089737463687971293967 
66 9.2962468327 7137008283 4476566367 4575503066 88756 

a7 -1.40511078831683179942567128926679825719406757 
57 10.22215952883488165524180132934744 

a8 -1.3580172791 3805034548737633310626140065806 
68 10.9486242659 4159042553 4207900712 234803 

a9 -1.321185759805252766782332645011 12163344 
59 11.76833363955408532268 157502 

a 1O - 1.291516867262344569625592342901483728 
610 12.3414090453 4929383969 7630423331 

all -1.267061407902472463290059733681 36867 
611 13.0765458056 5116239270 558 

a12 -1.2465277517207492954398065872519 
612 13.5350756661 702764957005633538 
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